Graham Wakefield
Cycling '74

\
O;

Max

1989 Max
A way of combining C modules via messages

1997 MSP
Signal processing chains, synchronous

2003 Jitter
Matrix processing, 2D and 3D graphics

2011 Gen
Code generation and runtime compilation of audio and matrix processing objects

700+ Max objects maxobjects.com 4781+ objects

800 Object Explorer
Show [) UlObjects Max MSP Jitter Patchers ¥ .]
Category ¥ 997 ltems "Q- Filter
¥ Basic (11) Show Less seAReH : or: [AND |5 what: [All %) For: (ANl) (ox)
[:[bpatcher - Embed a subpatch with a visible Ul
[5] button - Blink and send a bang | I | I
. OBJECTS A - Z LIERARIES A - Z AUTHORS A - Z CONTRACT LOGIN
u comment - Explanatory note or label
[:[flonum - Display and output a number
[;[inlet - Receive messages from outside a patcher
Welcome to the Max Objects DataBase !
[5] message - Send any message
-) . This site is designed to find objects, patches, applications, etc... from Max universe (Max/MSP, Jitter,...).
[5] newobj - A new Max object Justas an indication, some objects are listed to be available on Pure Data as well.
number - Display and output a number If you register, you could add objects, libraries, comments and news. You could edit or delete the data you added. Registering is free and

safe; already 4781 members are registered.
outlet - Send messages out of a patcher

preset - Store and recall settings

toggle - Switch between off and on (0/1)

Notes from the webmaster News

EEEEE

May 4th, 2009 : I'm currently working on a new version of the site. roby@arts.u [2011-10-1120:23:13]
¥ Audio (13) Show Less As | have to try new scripts, the site is maybe going to disfunctiona |, pl dto e thei diate release of rs.delos, a

little bit. Sorry about that. flexible timeline editor and player external for MaxMSP 5.
[5] ezadc~ - Audio input and on/off button

More info and videos:
R cvdanc Aidin e b arnd amlafl b b

What is Gen”?

Biquad filter b
Like biquad-
z U 51 m or ouin Direct form of a two-pole, two-zero filer

(near) QoS

Dessasy (o) (3
—— N

) ko)
3
e

- L ’ Pustory x1 jimmxz Previous input history
.‘z param a0 0.9 IT-UJMMO‘I I;&Iﬂh&?O!
- iI i1 11
l -] J.
%ﬂmo 0.000

T T
((0035) (b0) (0035 [-1629) (10830) reset
T T T T

in1 “input signal®

@081 a181 a281 b1S1 bB2$1 x10,x20,y1|

$ e

: history y1 history y2 Previous output history
3 param b1 0.2 IFaamnzoz

rn- @gen Mer _bcquml E I : I

Teepean,,

-

g
*02

out 1 "itered signal®

Efficient low-level DSP in Max

"Generate code and take it with you"

Flexibility + efficiency via run-tim neration

Why not convert to machine-code on the fly?
(reflective meta-programming & dynamic compilation)

set freg = 440 set fregq = 1

~ -

~ ~
ANOo : : : . ,
Fe@ e LR _ SR float freg, phase = 0; // state float freg, phase = 0; // state

for (int i=0; i<buffersize; i+4+4) {
prase += ... update by freq
sig0(i] = ... sine of phase

..... I
" sigl[buffersize]

sig@[buffersize]
IIIII"’ * “",,»””/’

for (int i=~0; i<buffersize; i+4+4) {
8ig2(i] = sig0(i] = sigl[i];

|
sig2[buffersize]

for (int i=0; i<buffersize; i+4+4) {
phase 4= ... update by freq
i (L] = ... sine of phase

,/"d‘—

sigl(i]

Modular compromise

for (int i=0; i<buffersize; i++) {
<write sigZ to device cutputs>

set fregl = 440 set fregl = 1 H H .
(@) (1) S - Via code generation:

no wasted memory buffers
better cache locality
global optimizations

l - float fregld, freql, phasel = 0, phasel = 0; // state

for (int i=0; i<buffersize; i++) {
phaseld += ... update by freqQ
8ig0 = ... sine of phasel
phasel += ... update by freql

sigl - ...

8ig2 =

<write

sine of phasel
sigd * sigl;
sig2 to device outputs>

single-sample feedback
possibly reduced latency
simpler / more expressive primitives

Summary

Consider patch as specification for compilet,
rather than interpreted network of black-box objects

Embed compiler in Max, invoke it at each edit
Embed results in Max, or export as C++

Requires/allows a new patching interface with slightly different semantics

Differences from Max/MSP patching

Different (smaller) set of objects

- inspired by Max/MSP objects - -
- most low-level objects exist in 1 in 2
- many shared between gen~, jit.gen

- no tilde (~) postli cartopol
no tilde (~) postfix cartopol

No messages (synchronous like MSP) c?ut 1 gu(2

- no right-to-left order output

- no left-inlet triggering, no hot/cold inlets
- multiple input connections are summed
- @attributes are static

- no Ul objects :-((maybe in the future?)

Type agnostic
- NO need to distinguish ints and floats
- gen recompiles to adapt to input type
- signal- or control-rate according to what is connected to gen~

Differences from Max patching

Connect with outside world via in, out and also param, buffer.

- use @comment for inlet/outlet assist
- param objects are "control-rate”
- buffer references can be changed dynamically

Objects are highly argument-dependent
- €.9. binary operators with an argument have only one inlet
- e.9. delay operator argument sets the number of delay taps
- ... many more examples

in1)ln2 n
. o~ delay 100 4
out 1 out 1

Unconnected inputs get default values in 1

- unconnected inlets get default values
- identity or other sane default

21+

[=
=
N

Use predefined constants and param names in arguments

* foo param foo

{ Dif2

o-ul 1

Gen~ operators

Overview in gen~.maxhelp and reference pages.
< 100 operators in total, mostly inspired by Max/MSP objects
Objects are mostly low-level; for oscillators, filters etc. see gen~ examples folder.

1806,
basic | standard-operators | gen~-operators feedback-and-delay | buffer-and-data profiling axpor n

gen~

Generate native audio signal processing routines

The gen~ object turns an embedded Gen patcher into signal processing routines of optimized
native machine code. The Gen patcher can be built from a wide set of low-level Gen operator
objects as well as embedded code expressions.

e gen~.maxhelp

signal inputs/outputs map to messages map to param, history, open/close the
the corresponding in and out buffer or data operators embedded gen
operators in the gen patcher patcher (or

double-click gen~)

amp$1 open wclose.

Tcle-— 220
n~ External Gen patchers (.gendsp) can be
%l:-m\ RGBT BT NG loaded from disk using the @gen attribute.

Take a look at the many patchers in
the examples/gen folder for more
ideas about how gen~ can be used.

Single-sample feedback

The flow of data inside the gen~ object is like MSP in that it’s synchronous,
but instead of operating on a block of samples, we’re working with one sample at a time
— which lets us do things with single-sample feedback that we could never do before.

[history]
- The Z-1 of gen patching
- Provides one sample of delay
- Allows feedback patching
- Essential to filter design, signal analysis etc.
- Can also be named and accessed externally like [param] objects

[delay]
- A variable delay down to 1 sample (O samples if @feedback is disabled)
- Allows feedback patching

- Essential to high-frequency physical models, diffusers, low-latency FX, etc.
- Delay data retained between edits!

- Supports multi-tap outputs, many interpolation modes

Single-sample feedback

Jae hyun Ahn, Richard Dudas. Musical Applications of Nested Comb Filters for

Inharmonic Resonator Effects. ICMC 2013.

Delay delay_1(44100);
Delay delay_2(44100);
tap_3 = delay_1.read(in6);
mul_4 =in4 * -1.;

mul_5 =tap_3 * mul_4;
tap_6 = delay_2.read(in5);
mul_7 =tap_6 * in3;
add_8 = mul_7 + mul_5;
mul_9 = add_8 * in4;
add_10 = mul_9 + tap_3;
add_11 =in1 + add_10;
mul_12 = add_11 * in2;
add_13=mul_12 + add_10;
out1 = add_13;
delay_1.write(add_8);
delay_2.write(add_11);

input gain g fi'fb alpass delay 1 delay 2
" coel ¢ coel k (samples) (samples)
in 1 in2
1 T in3 in 4 in5 in6
+
delay

this filter uses a nested

- structure, however the output
points are differant for the
outer and inner fillers. I has

it

delay the advantage of having a few

i T ooq simple coefficients for control
- - as well as being stable when
- - - - parameters (including the
\Z delay times) are changed

i

out 1 comb filtered output

Also:

The TR-808 Cymbal: a Physically-Informed, Circuit-
Bendable, Digital Model. Kurt James Werner,
Jonathan S. Abel, Julius O. Smith.

A Physically-Informed, Circuit-Bendable, Digital Model
of the Roland TR-808 Bass Drum Circuit. Kurt James
Werner, Jonathan S. Abel, Julius O. Smith.

Buffer and data

[buffer] and [data] are for multi-channel data-storage, with read & write operations.
Contents are retained between edits.

[buffer]

- References an MSP [buffer~] object (32-bit)
- Reference can be changed by Max message to gen~

[data]

- A 64-bit multi-channel storage, local to genpatcher
- Can copy data from MSP buffer~ by Max message to gen~

[sample], [wave], [peek], [lookup], [nearest]
- Basically the same object but different @attribute defaults:
- @index by samples, phase, lookup/signal, or wave (start/end)
- @boundmode ignore, wrap, fold/mirror, clip/clamp
- @channelmode ignore, wrap, fold/mirror, clip/clamp
- @interp none/step, linear, cosine, cubic, spline = 1280 code-generated permutations!

[poke], [splat]
- Writing samples into buffer/data
- Splat adds support for interpolated overdubbing

[dim], [channels]
- Reports size of buffer/data

GenExpr: expr and codebox

Code side-bar shows textual-equivalent of any visual patcher.
This simplified C-like language is called GenExpr.
It can also be used within the patcher:

[expr]

- short expressions can be neater than multiple objects

in1 i22
[codebox] .
- complex, multi-line code

- inline error reporting

Beyond visual patching:

- if/then/else conditionals
- while and for loops

- user-defined functions

- include external .genexpr files of functions

out 1

Easy to port existing DSP code (e.g. musicdsp.org) to GenExpr!

gen~.naos.maxpdal
gen~.chopper_repeat.maxpat
gen~.chopper.maxpat

Learning Gen

gen~.comb.maxpat
gen~.computed_sine.maxpat
gen~.count.maxpat
gen~.crossover.maxpat
gen~.deltaclip.maxpat
gen~.drunk.maxpat
gen~.edge.maxpat
gen~.fbam.maxpat
gen~.ffm.maxpat
gen~.filters.maxpat
gen~.flange_chorus.maxpat
gen~.flute.maxpat
gen~.fm_bells.maxpat
gen~.freeverb.maxpat
gen~.gigaverb.maxpat
gen~.interpolation.maxpat
gen~.karplus_strong_strange.maxpat
gen~.karplus_strong.maxpat
gen~.livelooper.maxpat
gen~.minmax.maxpat
gen~.modfm.maxpat
gen~.moogladder.maxpat
gen~.overdrive.maxpat
gen~.performance.maxpat
gen~.pfft_centroid.maxpat
gen~.pfft_example.maxpat
gen~.pfft.vectral.maxpat
gen~.phasor.maxpat
gen~.pitchshift.maxpat
gen~.pulsar.maxpat
gen~.random.maxpat
gen~.shaker.maxpat
gen~.sincinterpolation.forloop.maxpat
gen~.sincinterpolation.maxpat
gen~.slicer.maxpat
gen~.slide.maxpat
gen~.spectraldelay_feedback.maxpat
gen~.spectraldelay.maxpat
gen~.thresh.maxpat

gen~.trapezoid.maxpat
. i

Gregory Taylor's Tutorial Videos:
http.//cycling74.com/wiki/index.php ?title=gen~_For_Beginners

Gen Forums (helpful community, plenty of sharing):
http.//cycling74.com/forums/forum/gen/

In-Max help:

- Look at the examples folder first!

- Alt/option-click objects for assistance bubble

- Ref sidebar as you select objects

- Double-click on Max Window errors to highlight gen operator

® O O untitled (unlocked)

+ foo

o oo o oo loe ol o0 o0 e e e e ele el e el el e e ele e el el e

http://cycling74.com/wiki/index.php?title=gen~_For_Beginners
http://cycling74.com/forums/forum/gen/

Gen Tips

- Debugging: add an [out] object, hooked up to number~,
scope~, spectroscope~, capture~, etc.

- No messages means no [trigger] etc.; use 0/1 signals.
- Use code sidebar to help understand processes
- Use [param] for "control-rate" processing

- Use abstractions for repeated units (no feedback yet)

- Efficiency gains of gen~ increase as patcher gets bigger.

Algorithm Instances I o mazx o
Single-addition 100 MSP 5.7% 0.39 11% 0.49
Gen 5.0% 0.53 10% 0.45
Multi-addition 20 MSP 11.4% 0.26 22% 0.67
Gen 2.8% 0.05 % 0.49
Dual FM 20 MSP 22.1% 0.62 37% 1.10
Gen 12.7% 0.26 23% 0.50
Sinc interpolator | 10 |7 MSP| 274% 025| 46% 1.97 |
Gen 8.56% 0.18 18% 0.70

Gen and Jitter

Jitter domains:
jit.gen generalized matrix processing (C++)

jit.pix image processing (C++)
jit.gl.pix graphic hardware accelerated image processing (GLSL)

e sooemil] snoem{1] 0. a fat plane with x and y axis values are inthe range <1.0 - 1.0 2 cick on the messags boxss 15 I08d sxprassons
axpr soommiD] snoomi 1) sia(seommiDl*Pl). 299 & sne wave that changes the Z values along the X axis
sxpe snommit] sncem|1) sis(secem{1)'PY) 203 a sne wave that changes the Z values along the Y axis
expe snom{0] snom{1] MMP“MiI’Pﬂﬁ add 8 sne wave that changes the Z values along the the X and Y sces

Many operators shared

Arstp

mev0 S0 @actwe 1| 1D

With gen~ [1 wmon e renderny
L §-m 3
Some operators specific % Do
to Jitter o
(e.g. vec, swiz, ...) o
(320 rorran g rencer @eamers 036 4
s - .
(smocen_sa = -
JL0.mesh Qdraw_mode 11_07a Gpoly_mode 0 0 (auto_normals | (avto_cokors 1 (Rooir_made poskion H wirdow fragplane @lasting 1

- vector processing similar to GLSL fragment shaders

- up to 32D vectors

- up to 32D matrices

- has coordinate and vector ops

- has matrix sampling capabilities

- automatic parallelization of calculations

- settable kernel precision (fixed, float, double)

- all inputs and outputs are coerced to the same format

" in1
. open reload [
‘\\\ \\\ %—J +
N I
S en~
SNl S g out 1
Construct new unit
using editing
Extract entry function pointers '
,I
o Domain
linking |
| boxes & operators
]
1
\ templates
\
\
\‘\
Compile code JIT N\
Apply optimizations PN
o~ code
P generation

Generate data model

Apply templates to model

.~ patcherdomain

multigraph -
\ Dataflow analysis
T patcher y
\ parsing Validate operation 1/0O
Conform to GenExpr
expression
transforms

Analyze dataflow
Constant folding

Type assignment

Code Export

http://cycling /4.com/products/gen/codeexport/

® Xcode File Edit View Navigate Editor Product Window Help

Untitled1 (unlocked)

Exportcode [e freeverb.cpp

cs B & O

g-en~ freeverb | 4 » | @freeverb.cpp » No Selection

m_delay_15.step();
m_delay_17.step();
m_delay_19.step();
m_delay_21.step();
m_delay_22.step();
S 251 m_delay_23.step();

2 m_delay_24.step();

param damp 0.5 @man@m_tl e (*(_’(’mt‘l*wii’: t’)uti;r

1 send damp Ne
H

return __exception;

.015 bank of 8 parallel comb filters:

i

. - 2 inline void set_damp(double _value) {

receive damp receive damp | 265 m_damp_1 = (_value < 0 ? @ : (_value > 1 ? 1 : _value));

receive fb receive fb 63 inline void set_fbl(double _value) {
1116 1 m_fb_2 = (_value <@ ? 0@ : (_value > 1?1 : _value));

6 1
A 43 inline void set_fb2(double _value) {
:Spread +sp o m_fb_3 = (_value < ® ? 0 : (_value > 17?1 : _value));

f‘r’eevgrb_‘(_;om; freev;rb_zomg inline void set_spread(double _value) {
T m_spread_4 = (_value < @ ? @ : (_value > 400 ? 400 : _value));

8 } State;

series of 4 allpass delays:

f 556 f441

": spread Espread

—t

freeverb_allpass freeverb_allpass "
- - 282 gen_kernel_numins
= 283 gen_kernel_numouts

num_inputs() { return gen_kernel_numins; }

num_outputs() { return gen_kernel_numouts; }
num_params() { return 4; }

const char * gen_kernel_innames[] = { "in1" };
const char * gen_kernel_outnames[] = { "outl" };

int perform(CommonState =cself, t_sample **ins, long numins, t_sample sxouts, long numouts,
State * self = (State *)cself;

jit_gl . piX: eXpOI’t n return self->perform(ins, outs, n);
GI—SL Shader vomv re;et(tnmmonState *cs‘e{f) {

State * self = (State *)cself;
self->reset(cself->sr, cself->vs);

B OB ANORE

Also see Julien Bayle's blog!

Code spector Reference = Max freeverb.h

|
#(2.5, max=1, min=2);
s min=2);

inedd:

» min=8);
Parem spread(@, mex=400, min=0);
Deley delay_1(2000);
History history_2(@);

7| Delay delay_3(2000);
8| History history_4(@);
9| Delay delay_5(2000);
10| History history_6(@);

Deley delay_7(2000);
History history_8(@);

Deley delay_9(2000);
History history_10(2);
Deley delay_11(2000);
History history_12(2);
Delcy delay_13(2000);
History history_14(2);
Deley delay_15(2000);
History history_16(2);
Deloy delay_17(2000);

Delcy delay_18(2000);

Delay delay_19(2002);

Delcy delay_2@(2000);

mil 21 = b2 * 0.5;
floot_22 = float(225);
add_23 = float_22 + spread;
floot_24 = float(341);
add_25 = float_24 + spread;
floot_26 = float(441);
add_27 = float_26 + spread;
floct_28 = float(556);
add_29 = float_28 + spread;

3¢ = fbl;

@autoexport 1:
regenerate exported file
in-place at each edit.

Now being used to develop devices at Ableton, sound design for cars at Audi, ...

b O O = 4 92%@ LI mar. 25 juin 00:06 Julien

Q

Observations

Enhances the fluidity of user experience

- barrier between high- and low- levels of abstraction is reduced

- get immediate feedback on a change for real-time auditioning of edits
- no more C coding (and no more OSX/Window issues)

Increases the space of exploration

- better efficiency gains from use of runtime information

- easy to handle the combinatorial explosion of structural permutations
- uses less memory since only those permutations used are instantiated
- sub-block size processing

- control flow in GenExpr

Gen patchers are self-contained units sharing a common interface

- encourages sharing, posting and discussion since Gen patchers are interchangeable
- used in teaching/research at Columbia, CCRMA, etc.

Related:

- faustgen~

- LuaAV, Extempore
- Reaktor Core

Graham Wakefield
Cycling '74

\
O;

	Title
	Max
	Gen~
	Motivation 2
	Motivation 3
	Dynamic Compilation
	Gen Design
	Gen Properties 2
	Gen Properties 3
	Gen Properties 1
	Single-sample feedback
	Single-sample feedback 2
	Buffer data
	Codebox: GenExpr
	Learning Gen
	Learning Gen 2
	Gen and Jitter
	Gen Workflow
	Code Export
	Code Export 2
	Gen Observations
	Future
	Title 2

