
Graham Wakefield
Cycling '74

Max

1989 Max
A way of combining C modules via messages

1997 MSP
Signal processing chains, synchronous

2003 Jitter
Matrix processing, 2D and 3D graphics

2011 Gen
Code generation and runtime compilation of audio and matrix processing objects

700+ Max objects maxobjects.com 4781+ objects

What is Gen?

Efficient low-level DSP in Max

"Generate code and take it with you"

Flexibility + efficiency via run-time code generation
Why not convert to machine-code on the fly?

(reflective meta-programming & dynamic compilation)

Summary

Consider patch as specification for compiler,
rather than interpreted network of black-box objects

Embed compiler in Max, invoke it at each edit
Embed results in Max, or export as C++

Requires/allows a new patching interface with slightly different semantics

Different (smaller) set of objects

Differences from Max/MSP patching

- inspired by Max/MSP objects
- most low-level objects exist
- many shared between gen~, jit.gen
- no tilde (~) postfix

No messages (synchronous like MSP)
- no right-to-left order output
- no left-inlet triggering, no hot/cold inlets
- multiple input connections are summed
- @attributes are static
- no UI objects :-((maybe in the future?)

Type agnostic
- no need to distinguish ints and floats
- gen recompiles to adapt to input type
- signal- or control-rate according to what is connected to gen~

Differences from Max patching

Objects are highly argument-dependent

Unconnected inputs get default values

- e.g. binary operators with an argument have only one inlet
- e.g. delay operator argument sets the number of delay taps
- ... many more examples

- unconnected inlets get default values
- identity or other sane default

Connect with outside world via in, out and also param, buffer.
- use @comment for inlet/outlet assist
- param objects are "control-rate"
- buffer references can be changed dynamically

Use predefined constants and param names in arguments

Gen~ operators
Overview in gen~.maxhelp and reference pages.
< 100 operators in total, mostly inspired by Max/MSP objects
Objects are mostly low-level; for oscillators, filters etc. see gen~ examples folder.

Single-sample feedback

[history]

The flow of data inside the gen~ object is like MSP in that it’s synchronous,
but instead of operating on a block of samples, we’re working with one sample at a time
– which lets us do things with single-sample feedback that we could never do before.

- The Z-1 of gen patching
- Provides one sample of delay
- Allows feedback patching
- Essential to filter design, signal analysis etc.
- Can also be named and accessed externally like [param] objects

[delay]
- A variable delay down to 1 sample (0 samples if @feedback is disabled)
- Allows feedback patching
- Essential to high-frequency physical models, diffusers, low-latency FX, etc.
- Delay data retained between edits!
- Supports multi-tap outputs, many interpolation modes

Single-sample feedback

Jae hyun Ahn, Richard Dudas. Musical Applications of Nested Comb Filters for
Inharmonic Resonator Effects. ICMC 2013.

Delay delay_1(44100);
Delay delay_2(44100);
tap_3 = delay_1.read(in6);
mul_4 = in4 * -1.;
mul_5 = tap_3 * mul_4;
tap_6 = delay_2.read(in5);
mul_7 = tap_6 * in3;
add_8 = mul_7 + mul_5;
mul_9 = add_8 * in4;
add_10 = mul_9 + tap_3;
add_11 = in1 + add_10;
mul_12 = add_11 * in2;
add_13 = mul_12 + add_10;
out1 = add_13;
delay_1.write(add_8);
delay_2.write(add_11);

Also:

The TR-808 Cymbal: a Physically-Informed, Circuit-
Bendable, Digital Model. Kurt James Werner,
Jonathan S. Abel, Julius O. Smith.

A Physically-Informed, Circuit-Bendable, Digital Model
of the Roland TR-808 Bass Drum Circuit. Kurt James
Werner, Jonathan S. Abel, Julius O. Smith.

Buffer and data

[buffer]

[buffer] and [data] are for multi-channel data-storage, with read & write operations.
Contents are retained between edits.

- References an MSP [buffer~] object (32-bit)
- Reference can be changed by Max message to gen~

[data]
- A 64-bit multi-channel storage, local to genpatcher
- Can copy data from MSP buffer~ by Max message to gen~

[sample], [wave], [peek], [lookup], [nearest]
- Basically the same object but different @attribute defaults:
- @index by samples, phase, lookup/signal, or wave (start/end)
- @boundmode ignore, wrap, fold/mirror, clip/clamp
- @channelmode ignore, wrap, fold/mirror, clip/clamp
- @interp none/step, linear, cosine, cubic, spline

[poke], [splat]
- Writing samples into buffer/data
- Splat adds support for interpolated overdubbing

[dim], [channels]
- Reports size of buffer/data

= 1280 code-generated permutations!

GenExpr: expr and codebox

Code side-bar shows textual-equivalent of any visual patcher.
This simplified C-like language is called GenExpr.
It can also be used within the patcher:

[expr]
- short expressions can be neater than multiple objects

[codebox]
- complex, multi-line code
- inline error reporting

Beyond visual patching:
- if/then/else conditionals
- while and for loops
- user-defined functions
- include external .genexpr files of functions

Easy to port existing DSP code (e.g. musicdsp.org) to GenExpr!

Learning Gen

Gregory Taylor's Tutorial Videos:
http://cycling74.com/wiki/index.php?title=gen~_For_Beginners

Gen Forums (helpful community, plenty of sharing):
http://cycling74.com/forums/forum/gen/

In-Max help:
- Look at the examples folder first!
- Alt/option-click objects for assistance bubble
- Ref sidebar as you select objects
- Double-click on Max Window errors to highlight gen operator

http://cycling74.com/wiki/index.php?title=gen~_For_Beginners
http://cycling74.com/forums/forum/gen/

Gen Tips

- Debugging: add an [out] object, hooked up to number~,
scope~, spectroscope~, capture~, etc.

- No messages means no [trigger] etc.; use 0/1 signals.

- Use code sidebar to help understand processes

- Use [param] for "control-rate" processing

- Use abstractions for repeated units (no feedback yet)

- Efficiency gains of gen~ increase as patcher gets bigger.

Gen and Jitter

jit.gen generalized matrix processing (C++)
jit.pix image processing (C++)
jit.gl.pix graphic hardware accelerated image processing (GLSL)

Many operators shared
with gen~

Some operators specific
to Jitter
(e.g. vec, swiz, ...)

Jitter domains:

- vector processing similar to GLSL fragment shaders
- up to 32D vectors
- up to 32D matrices
- has coordinate and vector ops
- has matrix sampling capabilities
- automatic parallelization of calculations
- settable kernel precision (fixed, float, double)
- all inputs and outputs are coerced to the same format

What happens when you make an edit

gen~

open reload
in 1 in 2

+

out 1

Conform to GenExpr

Validate operation I/O

Dataflow analysis

Type assignment

Constant folding

Analyze dataflow

Generate data model

Apply templates to model

Compile code

Apply optimizations

Extract entry function pointers

templates

boxes & operators

Domain patcher
parsing

multigraph

patcherdomain
Construct new unit

expression
transforms

code
generation

JIT

linking

using editing

Lua

CC

LLVM +
Clang

Max

Code Export
http://cycling74.com/products/gen/codeexport/

Also see Julien Bayle's blog!

@autoexport 1:
regenerate exported file
in-place at each edit.

jit.gl.pix: export
GLSL shader

Now being used to develop devices at Ableton, sound design for cars at Audi, ...

Observations

Enhances the fluidity of user experience

Gen patchers are self-contained units sharing a common interface

Increases the space of exploration

- barrier between high- and low- levels of abstraction is reduced
- get immediate feedback on a change for real-time auditioning of edits
- no more C coding (and no more OSX/Window issues)

- better efficiency gains from use of runtime information
- easy to handle the combinatorial explosion of structural permutations
- uses less memory since only those permutations used are instantiated
- sub-block size processing
- control flow in GenExpr

- encourages sharing, posting and discussion since Gen patchers are interchangeable
- used in teaching/research at Columbia, CCRMA, etc.

Related:
- faustgen~
- LuaAV, Extempore
- Reaktor Core

Graham Wakefield
Cycling '74

	Title
	Max
	Gen~
	Motivation 2
	Motivation 3
	Dynamic Compilation
	Gen Design
	Gen Properties 2
	Gen Properties 3
	Gen Properties 1
	Single-sample feedback
	Single-sample feedback 2
	Buffer data
	Codebox: GenExpr
	Learning Gen
	Learning Gen 2
	Gen and Jitter
	Gen Workflow
	Code Export
	Code Export 2
	Gen Observations
	Future
	Title 2

